Microsoft Azure

SI No. Content

1. Storing file on Azure storage using Drupal module

2. Custom function to store any file on azure server

1. Aim: - To store Drupal File on Microsoft Azure Blob storage account.
2. Requirement: -

e Account name is required.
e Account key is required.

3. Install module named Azure Blob Storage File System through composer

composer require drupal/az_blob_fs
drush en az_blob_fs

4. After enabling this module go to /admin/config/media/azure-blob-file-system and
configure the system.

First you need to setup and account in which you will put azure storage account name
and key refer below image to setup account and key.



ki Content gl Structure 44 Appearance  Pe Extend W, Configuration  J3 People

Comments
e emeeeeeee-pdlate available for your version of Drupal. To ensure the security of your server, you
I pdates
Key name *
mattersitestorage Machine name. mattersitestorage

Description
A short description of the key

¥ TYPE SETTINGS
Key type *
Authentication -

A generic key type to use for a password or API key that does not belong ta any other defined key type

¥ PROVIDER SETTINGS
Key provider *
Configuration ¥

The Configuration key provider stores the key in Drupal's configuration system.

¥ VALUE

Key value
M6vah-+uBcAQUFLZxhffdavem|90selwdjtk 1 03CqRSazAQiw] ZX9IFTASALS 2w

5. Then go to /admin/config/media/file-system and set default file system to file
served from azure.

< C @ localhost8080/matter/web/admin/config/media/file-system % O O (e

@ Home = Manage Y Shortcuts % admin )

B content gh Structure  4X Appesrance | Pge Extend S\ Configuration g People I Reports @ Help

Home » Administration » Configuration » Media

© There is a security update available for your version of Drupal. To ensure the security of your server, you should update immediately! See the available updates page for more information and to install your missing
updates.

Public file system path
sites/default/files
A local file system path where public files will be stored. This directory must exist and be writable by Orupal. This directory must be relative to the Drupal installation directory and k essible aver the web. This must be changed ir
settings.php
Public file base URL
hitp://localhost: 8080, matter /web/sites/default/files
The base URL that will be used for public file URLs. This can be changed in settings.php
Private file system path
Not set
An existing local file system path for storing private files. It should be writable by Drupal and not accessible over the web. This must be changed in settings.php
Temporary directory
xampp'tmp
A local file system path where temporary files will be stored. This d y should not be accessible over the web. This must be changed in settings
Default download method
Public local files served by the webserver.
® Files served from Azure Blob Storage
This setting Is used as the preferred download method. The use of public files is more efficient, but does not provide any access contr
Delete temporary files after
6 hours =
Temporary files are not referenced, but are in the file system and therefore may show up in administrative lists, Warning: If enabled, temporary files will be permanently deleted and may not be recoverable.

Once the setup is done go to the content type and change the image and file upload
destination from public files to azure blob. Now whenever you will upload image or
file it will upload on Azure server.



<« Cc ® localhost:8080/matter/web/admin/structure/types/manage/product_page/fields/node.product_page.field video/storage

@ Backtosite = Manage Y Shortcuts 4 admin

b content ¢k Structure | €3 Appearance | o Extend ¥\ Configuration g People |J Reports @ Help

Video ¢

Edit Field settings

Home » Administration » Structure » Content types » Product Pages » Manage fields » Video

I © There is a security update available for your version of Drupal. To ensure the security of your server, you should update immediately! See the available updates page for more information and to install your missing upd

I © There is data for this field in the database. The field settings can no longer be changed

These settings apply to the Video field everywhere it is used. These settings impact the way that data is stored in the database and cannot be changed once data has been created.

[JEnable Display field

The display option allows users to choose if a file should be shown when viewing the content

Upload destination

Public files

Azure Blob Storage
Select where the final files should be stored. Private file storage has significantly more overhead than public files, but allows restricted access to files within this field
Allowed number of values

Unlimited v

Save field settings

Aim:- To create and upload JSON file on Azure server.

Code to update files on Azure Blob using custom theme.

Sometimes, we need to use custom code to update files on azure blob file system. In this tutorial we
are creating a custom theme templet this will create a JSON file and save the file on Azure storage.

First we will create a JSON file and save the file on server or folder like “C:\path\to\file.png”. To save
file on Azure storage we will call function storageAddFile . This function will take three parameter
azure container name, path of local file name and filename where we store the file. Below code
using env file for credentials.

/**
* Convert the data into json format
*/
function convertTolson(Sfilename, Sdata)
{
Sdata = json_encode(Sdata, true);
//Spath = 'C:/xampp/htdocs/matter/frontend/json_data'; //this line will save JSON on
Local folder
Spath =S _SERVER['DOCUMENT_ROOT'] . '/json_data'; //This line will save JSON on
server
Spattern ="'/\/web/';
Spath = preg_replace(Spattern, ", Spath);
// To save JSON file in local directory.
Sfile ="Spath/Sfilename";
Shandle = @fopen(Sfile, "w+");



if (Shandle) {
fputs(Shandle, Sdata);
fclose(Shandle);
header('Cache-Control: must-revalidate, post-check=0, pre-check=0');
header('Pragma: no-cache');
header("Content-Type: application/json");
header("Content-Disposition: disposition-type=attachment; filename=\"Sfilename\"");

// To save JSON file in Azure blob.
storageAddFile(getenv('CDN_FOLDER'), Sfile, "assets/json/Sfilename");
}

1. Install azure library via Composer

{
"require": {
"microsoft/azure-storage-blob": "*"
}
}

2. include the autoloader script
require_once "vendor/autoload.php";
3. Include the namespaces you are going to use.

To create any Microsoft Azure service client you need to use the rest proxy classes, such as
BlobRestProxy class:

use MicrosoftAzure\Storage\Blob\BlobRestProxy;
use MicrosoftAzure\Storage\Blob\Models\CreateBlockBlobOptions;

4. To instantiate the service client you will need a valid connection string in the format

AZURE_BLOB_CONNECTION="DefaultEndpointsProtocol=https;AccountName=mattersitestor
age;AccountKey=9egiuwwsN6VCb3B/NLZSvraXK+HDpgAQH5cg3KNeouSsDpgjOy1808HLAYFG
D09xx8H3Qanuji68+ASt2vMQ2g==""

## adds file to the storage. Usage: storageAddFile("myContainer", "C:\path\to\file.png", "filename-
on-storage.png")

5. below source code is saving data saving file on the azure server.

SconnectionString = getenv('AZURE_BLOB_CONNECTION');
define('CONNECTION', SconnectionString);



/**
* Adds file to the storage. Usage: storageAddFile("myContainer”, "C:\path\to\file.png",
"filename-on-storage.png")
*/
function storageAddFile(ScontainerName, Sfile, SfileName)
{
SblobClient = BlobRestProxy::createBlobService(CONNECTION);
Shandle = @fopen(Sfile, "r");
if (Shandle) {
Soptions = new CreateBlockBlobOptions();
Smime =null;
try {
// identify mime type
Smimes = new \Mimey\MimeTypes;
Smime = Smimes->getMimeType(pathinfo(SfileName, PATHINFO_EXTENSION));
// set content type
Soptions->setContentType(Smime);
} catch (Exception Se) {
error_log("Failed to read mime from "' . Sfile . ": " . Se);
}
try {
if (Smime) {
ScacheTime = getCacheTimeByMimeType(Smime);
if (ScacheTime) {
Soptions->setCacheControl("public, max-age=" . ScacheTime);
}
}
SblobClient->createBlockBlob(ScontainerName, SfileName, Shandle, Soptions);
} catch (Exception Se) {
error_log("Failed to upload file " . $file . "' to storage: " . Se);
}
if (is_resource(Shandle)) {
@fclose(Shandle);
}
return true;
}else {
error_log("Failed to open file " . Sfile . "' to upload to storage.");
return false;

}
}

/**
* Get cache time by mime type

*/



function getCacheTimeByMimeType(Smime)
{

Smime = strtolower(Smime);

Stypes = array(
"application/json" => 604800, // 7 days
"application/javascript" => 604800, // 7 days
"application/xml" => 604800, // 7 days
"application/xhtml+xml" => 604800, // 7 days
"image/bmp" => 604800, // 7 days
"image/gif" => 604800, // 7 days
"image/jpeg" => 604800, // 7 days
"image/png" => 604800, // 7 days
"image/tiff" => 604800, // 7 days
"image/svg+xml" => 604800, // 7 days
"image/x-icon" => 604800, // 7 days
"text/plain" => 604800, // 7 days
"text/html" => 604800, // 7 days
"text/css" => 604800, // 7 days
"text/richtext" => 604800, // 7 days
"text/xml" => 604800, // 7 days

);

// return value

if (array_key_exists(Smime, Stypes)) {
return Stypes[Smime];

}

return false;

/**
* Removes file from the storage. Usage: storageAddFile("myContainer", "filename-on-
storage.png")
*/
function storageRemoveFile(ScontainerName, SfileName)
{
// Create blob client.
SblobClient = BlobRestProxy::createBlobService(CONNECTION);
try {
SblobClient->deleteBlob(ScontainerName, SfileName);
} catch (Exception Se) {
error_log("Failed to delete file " . SfileName . "' from storage");

}

return true;



